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ABSTRACT cur periodically. Timed I/O Automata formalism provides
Tempo is a simple formal language for modeling distributed, good support for describing these constraints and capabil-
concurrent, and timed systems as collections of interact- ities. Timed and untimed I/O Automata formalisms have
ing state machines, called timed input/output automata. been effectively used for specifying numerous distributed and
Tempo provides natural mathematical notations for describ- concurrent algorithms [6]. The Tempo language provides
ing systems, their intended properties, and intended rela- simple formal notation for describing Timed I/O Automata
tionships between their descriptions at varying levels of ab- precisely, based on the pseudocode notation that has been
straction. The Tempo Toolkit is an implementation of the used in many research papers. It also allows specification
Tempo language and a suite of tools that supports a range of properties such as invariant assertions and relationships
of validation methods for descriptions of systems and their between automata at different levels of abstraction. The
properties, including static analysis, simulation, and machine- Tempo language is supported by an associated integrated
checked proofs. This paper gives a brief overview of the development environment toolkit, also called Tempo, that
Tempo language and illustrates its utility on selected exam- provides an extensible framework supporting a range of in-
ples of importance to distributed computing. The focus of tegrated analysis and validation tools, including static anal-
the presentation is on the Tempo tools, and in particular, ysis, simulation, model-checking, and theorem-proving. Ad-
the simulator. ditional tools under consideration include optimization of

distributed deployment of systems specified in Tempo, and

Categories and Subject Descriptors generation of distributed code from specifications.

F.4.3 [Formal Languages]: Tempo;, D.3 [Programming Many distributed systems involve a combination of com-
Program Verification; C.2.4 [Computer-Communication puter components and real-world, physical entities such as
Netogrm Verificatrion; 4 [m u n vehicles, robots, or medical devices. Systems involving in-
Networks]: Distributed Systems teraction between computer and real-world components usu-

ally have strong safety, reliability, and predictability require-
General Terms ments, stemming from the requirements of real-world appli-
Input Output Automata, Timed Input Output Automata, cations. This makes it especially important to have good
Distributed Algorithms, Specification, Verification methods for modeling the systems precisely and analyzing

their behavior rigorously. Tempo provides a simple, elegant,

1. INTRODUCTION and powerful mathematical foundation for analyzing a wide

Tempo is a simple formal language for modeling distributed variety of systems, and it can be used to model both com-

systems as collections of interacting state machines called puter and real-world system components, as well as their

Timed Input/Output Automata [3]. Timed Input/Output interactions.

Automata are often referred to as Timed I/O Automata, or
just TIOAs. The distributed systems in question may have Tempo can be used to model practically any type of dis-

timing constraints, for example, bounds on the time when tributed system, including (wired and wireless) communi-

certain events may occur, or bounds on the rates of change of cation systems, real-time operating systems, embedded sys-

component clocks. They may use time in significant ways, tems, automated process control systems, and even biolog-

for example, for timeouts, or for scheduling events to oc- ical systems. The behavior of these systems generally in-
cludes both discrete state changes and continuous state evo-
lution; Tempo is designed to express both kinds of changes.

The Tempo Toolkit was developed by VEROMODO Inc., with
support provided by an AFOSR technology transfer grant.
The beta releases of the Tempo Toolkit for Linux, Win-
dows, and Mac OS X platforms are available for download
at www.veromodo.com.

20080226471



Earlier work on a toolkit supporting specification in (un- 2.2 The Tempo language and tools
timed) Input/Output Automata was performed at the MIT I/O Automata and Timed I/O Automata are fine math-
Theory of Distributed Systems group [2]. The prototype ematical modeling frameworks for distributed systems and
toolkit supported a simulator [1], paired automata simula- have been used, by hand, to describe and analyzie distributed
tion [8], and simulations of composed automata [9]. algorithms, communication protocols, and embedded sys-

tems. Yet, computer support could make these tasks quite
In the rest of this paper we overview the Timed I/O Au- a bit easier. The Tempo Language and Toolkit is an attempt
tomata, the Tempo language, and toolset (Section 2), illus- at providing a broad set of tools to support these activities.
trate the capabilities of Tempo and its simulator (Sections 3
and 4), and describe the user interface of the Tempo inte- The Tempo toolkit contains tools to support analysis of sys-
grated development environment (Section 5). tems. These include a compiler that checks syntax and per-

form static semantic analysis; a simulator to produce and
explore execution traces for an automaton; a translation

2. TEMPO OVERVIEW module to the UPPAAL model-checker [4]; and a transla-
We now discuss the Timed I/O Automata formalism that is tion module to the PVS interactive theorem-prover [7]. The
the basis of the Tempo language, and summarize the capa- overall architecture of the Tempo toolkit has been designed
bilities of the Tempo toolkit, to facilitate incorporation of other validation tools in tile

future.

2.1 Timed 1/0 Automata
The Timed I/O Automata [3] mathematical framework is The Tempo language has a rather minimal syntax, which

an extension of the classical I/O Automata framework [5, closely matches the simple semantics of the Timed I/O Au-

6]. which for many years has been successfully used in the tomata mathematical framework. In fact, the mapping be-

theoretical distributed computing research community to tween a Tempo automaton description and the Timed 1/O

specify and reason about distributed and concurrent algo- Automata that it denotes is pretty transparent. For exam-
ple, an automaton's discrete transitions and continuous evo-

crhms I/Ote Aumataines,arethovey sp t i erciing alutions are described directly in Tempo, by "transitions" and
chroiious state machines, without any support for describing "taeors,rspcily ThmnmatyfteTmo

timing features. Although they are simple, I/O Automata "trajectories", respectively. The minimality of the Tempo

provide a rich set of capabilities for modeling and analyzing language does not limit its expressive power: Tempo is ca-

distributed algorithms. I/O Automata support description pable of describing very general systems of Timed I/O Au-

of many properties that distributed algorithms are required tomata. Of course, many analysis tools-especially auto-

to satisfy, and mathematical proofs that the algorithms in mated ones like model-checkers-are not capable uf handling

fact satisfy their required properties. These proofs are based fully general Tempo programs. In contrast with the con-

on methods such as invariant assertions and compositional ventional approach taken by developers of automated tools,

reasoning. I/O Automata also support representation of al- Tempo does not outright limit the expressive power of the

gorithms at. different levels of abstraction, and proofs of con- language and opts instead for the definition of sublanguages

sistency relationships between algorithm representations at that are suitable for use with particular tools.

different levels. Because of these capabilities, I/O Automata
have been used fairly extensively for modeling and analyzing 3. THE DRIVING EXAMPLE.
asynchronous distributed algorithms, and even for proving To illustrate the capabilities of Tempo and its simulator,
impossibility results about computability in asynchronous we will be using the Fischer Timed Mutual Exclusion Al-
distributed settings. gorithm. It has become famous as a standard test example

for formal methods for modeling and analyzing timed sys-
However, ordinary I/O Automata cannot be used to describe tems. An informal description of the example appears in [6],
distributed algorithms that use time explicitly, for example, Chapter 24.
those that use timeouts or schedule events periodically. And
they do not provide explicit support for describing timing 3.1 The Tempo specification
constraints such as bounds on message delay or clock rates. This example illustrates most of the basic constructs needed
Moreover, without support for timing, I/O Automata could for writing a Tempo program for a single Timed I/O Au-
not be used for other applications such as practical com- tomaton modeling a shared-memory system. The example
munication protocols. These limitations led to the develop- also demonstrates how to express invariants using Tempo,
ment of Timed I/O Automata, which include new features- including invariants that involve time.
most notably, trajectories-specifically designed for describ-
ing timing aspects of systems. The Tempo model shown in Code 1,2 describes the entire

system as a single Timed I/O Automaton. The vocabulary
Like ordinary I/O Automata, Timed I/O Automata are sim- section declares the data types used in the algorithm, namely,
pIe interacting state machines and have a well-developed, the abstract data type process and the program counter ab-
elegant theory, presented in [3]. Like I/O Automata, Timed stract data type PcValue (an enumerated type) to represent
I/O Automata provide a rich set of capabilities for system the exact location of each process in its program. Each pro-
modeling and analysis. Methods used for analyzing timed cess could be in its remainder region (program counter =
I/O automata are essentially the same as those used for or- pc-rem), where it is not engaged in trying to enter the crit-
dinary I/O automata: invariant assertions, compositional ical region. Or, it could be about to test, set, or check the
reasoning, and correspondences between levels of abstrac- turn variable. Or, it could be in various stages of entering or
tion. leaving the critical region-the model uses separate program



vocabulary fischer-types internal check(i)
types process, pre pc[i] =pc-check Afirst-check[i] <now;
Pc Value : Enumeration [pc-rem, pc-test, pc_set, pc_check, eff if turn =embed(i) then

pc-leavetry, pc.crit, pc-reset, pc_leaveezit] pc[i] = pc.leavetry;
end else

pc[i] = pc-test;
automaton fischer(lcheck, u-set: Real) fi;

where u-set < Lcheck Au-set >0 ALcheck >0 firsLcheck[il : = 0;
imports fischer-types output crit(i)

pre pc[i] =pc_leavetry;
signature eff pc[i] : = pc_crit;

output try(i: process) output exit(i)
output crit(i: process) pre pc[i] =pC_crit;
output exit(i: process) eff pc[i] : = pc.reset;
output rern(i: process) internal reset(i)
internal test(i: process) pre pefi] =pc-reset;
internal set(i: process) eff pc[i] = pc-leaveexit;
internal check(i: process) turn nil;
internal reset(i: process) output rern(i)

pre pc[il =pc.leaveexit;
states eff pc[t] : = pc-rern;

turni: Null[process] = nil; trajectories
pc: Array[process, PcValue] := cons tant(pc_rern); trajdef traj
now: Real : = 0; stop when
last-set: Array(process, AugmentedReal] : = constant(o); 3i: process (now =lasLset[i);
first-check: Array[process, DiscreteReal] := constant(O); evolve

d(now) =1;
transitions

output try(i) Code 2: Tempo spec. of the Fischer algorithm (II)
pre pc[i] =pc_rem;
eff pc[i] : = pc_test;

internal test(i)
pre pc[i] =pc_test;
eff if turn =nil then type of action is parameterized by the name of the process

pcli[ : = pc-set; that performs it. In this model, the internal actions are as-
last-setli] : = (now + u.set); sociated with shared-variable accesses-the steps that test,fi;

internal set(i) set, check, and reset the turn variable. The output actions

pre pc[i] =pc-set; are those that mark processes' progress through the various
eff turn : = embed(i); high-level regions of their code: The try(i) action describes

pclz] : pc-check; process i moving from its remainder region to its trying re-
last-set[i] : = no; gion, in which it executes a protocol to try to reach the
firsLcheck[i] : = now + Lcheck; critical region. The crit(i) action describes passage from the

trying region to the critical region, and the exit(i) action
Code 1: Tempo spec. of the Fischer algorithm (I) describes passage from the critical region to the exit region,

where process i performs its exit protocol. Finally, the rern(i)

action describes passage from the exit region back to the re-
mainder region.

counter values to represent situations where the process has
successfully completed the trying protocol, where it is actu- The automaton's state is specified in the states section. The
ally in the critical region, where it is about to reset the turn shared variable turn has type Nulliprocess], which indicates
variable upon leaving, and where it has successfully com- that its value can either be a process or the special value
pleted the exit protocol. nil to indicate the absence of value, turn is initially set to

nil. The variable pc, represents the program counters for
The actual automaton description begins with the name of all of the processes in an array of Pc Value indexed by pro-
the automaton, with formal parameters Lcheck and u_set. cesses. Initially, all of the program counter values are set
These are real numbers representing, respectively, a lower to pc_rem, which means that all of the processes start out in
bound on the time between setting and checking, and an the remainder region.
upper bound on the time between checking and setting. The
where clause specifies restrictions imposed on the parame- The remaining three variables are introduced solely to ex-
ters saying (most importantly) that u-set must be strictly press the needed timing constraints. First, the variable now
less than Lcheck. The automaton imports the vocabulary to is used to represent the real time. It is initialized at 0.
make its definition available to the remainder of the specifi-
cation. Second, the variable last-set is an array containing absolute

real time upper bounds (deadlines) for the processes to per-
The automaton's signature, describe its actions. Actions form set actions. A deadline will be in force for a process
are classified as input, output, or internal. Here, no input i only when its program counter is equal to pc_set, that is,
actions are used, i.e., the system is "closed". Since the en- when it is in fact ready to set the turn variable. In this case,
tire system is being modelled by a single automaton, each the value of lasLset[i] will be a nonnegative real number: oth-



erwise, that is, if the program counter is anything other than passed (first-check[i) <now). When the transition executes,
pc..set, the value will be oc, representing the absence of any two interesting cases may arise: If process i finds that turn
such deadline. The elements of the last-set array are defined is still equal to i, it leaves the trying region and enters the
to be of typeAugmentedReal: a type that includes all (positive critical region. On the other hand, if it finds the turn variable
and negative) real numbers, plus two values corresponding equal to anything else, it gives up the current attempt and
to positive and negative infinity. Initially, since none of the goes back to the testing step. In either case, firsLcheck[i] is
program counters is pc_set, the values in the array are all 0c. reset to its default, 0.

Third and finally, the variable firsLcheck is an array con- The subsequent transitions are quite straightforward. A
taining absolute real time lower bounds (earliest times) for crit(i) transition represents process i moving into the critical
the processes to perform check actions, when their program region, and an exit(i) transition represents process i leaving
counters are equal to pc_check. The elements of first-check are the critical region. A reset(i) transition represents process i
of type DiscreteReal, which means that they always have Real resetting the turn variable to its default value nil, and a rern(i)
values, and moreover, they do not change between discrete transition represents process i returning to its remainder re-
actions. gion.

The detailed description of the transitions of the automaton The final part of the automaton description is the set of
follows in the transitions section. Transitions are (state, ac- trajectories, that is, the functions from time to states that
tion, state) triples. The transitions are described in guarded describe how the state is permitted to evolve between dis-
command style, using small pieces of code called transition crete steps. This model specifies one trajectory definition,
definitions. Each transition definition denotes a collection named traj. This definition describes the evolution of the
of transitions, all of which share a common action name. state in a way that allowed the current time now to increase

at rate 1. All of the other state variables are of types that are
Each transition has a name, list of parameters, a precondition defined to be discrete; these, by default, are not allowed to
that indicates when the action is enabled and finally, an ef- change during trajectories. The stop when condition says
fect clause that describes the changes to the state when that that a trajectory must stop if the state ever reaches a point
accompany the action. Input actions are always enabled, re- where the current time now is equal to a specified deadline
fleeting the assumption that Timed I/O Automata are input- lasLset[i], for any i. That is, time is not "allowed to pass"
enabled. Notionally, input actions have no preconditions, as beyond any deadline currently in force.
a shorthand for the precondition being true.

This stop when condition is an example of a phenomenon
The try(i) transition represents an entrance by process i into whereby an automaton can prevent the passage of time.
its trying region. The transition is allowed to occur when- This may look strange (at first) to some programmers, since
ever pc[i] =pc.rem, that is, whenever process i is in its re- programs of course cannot prevent time from passing. How-
mainder region. The effect is simply to advance the program ever, appearances can be deceiving and the Fischer automa-
counter to pc_test to indicate that process i is ready to test ton is not exactly a program; it is a descriptive model that
the turn variable. expresses both the usual sort of behavior expressed by a

program, plus additional timing assumptions that might be
The test(i) transition represents process i testing the turn expressed in other ways.
variable. It is allowed to occur whenever pc[i] =pc-test. The
transition can either find the turn variable equal to nil at 3.2 Properties of the algorithm
which point it moves to take the turn (by setting the pro- Tempo can be used to describe not just algorithms, but also
gram counter to pc_set) and saves in last-set[i] the deadline properties that we would like the algorithms to satisfy. For
for the set action to occur at the latest in u-set time steps example, the Fischer algorithm is supposed to satisfy the
in the future (away from now). The transition can also find mutual exclusion property, saying that no two processes can
that turn is not nil and simply takes no action to remain in simultaneously reside in their critical regions. This is a claim
the state, ready to test again, that the mutual exclusion is an invariant of the Fischer al-

gorithm, that is, that it is true in all reachable states of the
The set(i) transition represents process i setting the turn fischer automaton. This claim can be expressed in Tempo
variable to its own index. This is allowed to occur whenever with a block
pc[i) =pc-set. The effects are given as straight-line code in invariant of fischer
which process i simply sets turn to its own index (the embed Vi: process Vj: process
call is necessary to store the value into an object of type (i 54 -(pc[i] #pccrit vpc4] 5pc_crit));
Null[process]). The code then sets the program counter to
pc_check to enable the check(i) transition that will verify the
turn variable. Now that the set(i) action has occurred, t This invariant definition claims that, in any reachable state
last-set[i deadline is reset to its default value, oo. The code of the utma on. ny two satemntamusy
also records the earliest time when process i could recheck beuinethe crii secto i formal tofthe urnvariblebasd onthecurrnt loc nowandthe course, be verified with a tool in order to formally prove
the turn variable based on the current clock now and the that the algorithm is correct. For instance, one could use

an interactive theorem prover such as PVS, a model-checker
like UPPAAL, or run simulations of the protocol and require

The chek(i) transition is enabled when process i's program the simulator to check the assertions after every single step
counter is set to pc.check and its earliest checking time has of the simulations.



4. SIMULATION actual values. When a fire event occurs, the Tempo sim-
In this section we illustrate the use of the Tempo simula- ulator identifies all the transitions that match the event.
tor on the Fischer Mutual Exclusion example. We also de- Indeed, several transitions could apply and the simulator
scribe language extensions designed to enable simulations must determine which transitions are enabled (their pre-
of Tempo specifications: schedules, simulations, and simu- conditions are true). Once selected for execution the tran-
lation relations. sition effects clause runs to update the state variable of the

automaton. When all the transitions have fired, the control

4.1 Schedules is returned to the schedule.

Timed Input/Output automata are non-deterministic ma-
chines. Indeed, at any point in time, multiple transitions When simulating a composite automaton, the fire event may

may be enabled and ready to fire. The simulation of a non- correspond to a handshake between an output transition of

deterministic computation is delicate as the simulator must a component and one or more input transitions of other

resolve the non-determinism and produce a total ordering components. The simulator will execute all the matching

over the events by deciding which enabled action to run transitions starting with the output and unify the arguments

next. A priori, a simulator may not be able to determine to pass actual values from the output to the inputs. For

which total ordering among all the possible options is worth instance, in the model

executing. automaton A
signature output foo(n:Int)

The Tempo simulator addresses this issue by putting the states x: Int : = 10;
transitions

modeler in charge of resolving the non-determinism with a output foo(n)
schedule. A Tempo schedule is an imperative code fragment eff
that programmatically specifies the sequence of actions that n : = x;
the automaton should undergo. Schedules can have local
state, can observe the state of the automaton and are re- automaton B(k: Int)
sponsible for deciding the duration of trajectories, sequence signature input foo(:Int)

states y : Int : = 0;
of transitions as well as the actual arguments for these tran- transitions
sitions. Schedules are not required to completely eliminate input foo(n)
all non-determinism, but can limit themselves to reducing eff
it and st,ill rely on randomization for specific decision (e.g., y: = n + k;
the duration of a trajectory). automaton C

components a:A; bl:B(0);b2:B(4);
The code fragment in Figure 1 depicts a particular schedule schedule
for the fischer automaton. The local variable dur stores the states n: Int : = 5;
duration of a trajectory segment. The schedule body is an do
imperative program that iterates through all the processes. fire output a.foo(n);
Iteration i focuses on process i and starts by choosing, uni- print n;
forinly at random from the range [1.. 101, the amount of time od

that should pass for the system before process i initiates the
sequence of transitions to acquire the lock and enter the the automaton C has three components a, b1 and b2. When
critical section. the schedule of C executes, it declares a local variable n,

sets it to 5 and fires the foo output action of component
schedule a. Given that the two other components (bi and b2) have

states matching input actions, all three are scheduled for execution
dur : AugmentedReal; starting with the output action. The output of component

do a copies the value of its state variable in the output formal
while (true) do n. The matching input executes next (in any order) and

for i in process do .
dur: = choose n where 1 <n An <10; the handshake passes the value of the formal into the input
follow traj duration dur, action. Consequently, the input action of bl alters bl's state
fire output try(i); variable y and sets it to 10 + 0. Similarly, when the input of
fire internal test(i); b2 executes, it sets its own state variable y to 10+4. Finally
fire internal set(i); the control returns to the schedule, which prints the value
follow traj duration 100; of variable n, now bound to 10.
fire internal check(i);
fire output crit(i);
fire output exit(i); A Timed Input/Output automaton trace should feature a
fire internal reset(i); strict alternation of transitions and trajectories, yet, tra-
fire output rern(i); jectories can be instantaneous (0 duration) and the Tempo

od simulator automatically inserts such a 0-duration trajectory
od od between transitions as needed.

4.2 Simulations
Figure 1: A schedule for the fischer automaton Tempo supports parametric automata definitions. For in-

stance, in the code fragment 1, the fischer automaton is pa-
A fire statement triggers the named action and provides the rameterized with the lower bound on the waiting delay and



the upper bound on trajectory durations. Parametric defini- A general theorem is that A implements B if there is a for-
tions are convenient to define an entire family of automata, ward simulation from A to B (see Chapter 4 of [3]).
and once again, a simulator must bind these parameters to
specific values to execute a simulation. From a simulation The specification of a forward simulation begins with the
standpoint, it may even be desirable to execute many simu- keywords forward simulation, followed by a name for the
lations with different parameter instantiations. Tempo ad- simulation relation, optional formal parameters and possi-
dresses both needs with a scripting capability in the form of bly a where clause constraining these parameters. It con-
a simulate block. tinues with descriptions of the two automata involved in the

simulation. The "lower-level" automaton (A in the forward
For instance, to execute a single simulation of the Fischer simulation definition above) is specified using the keyword
automaton, one can write from, followed by a short name for the automaton, a colon

simulate do and a description of the automaton. Similarly, the "higher-

run fischer(4,2); level" automaton (B above) is specified using the keyword

od to, followed by a short name, a colon, and a description of
the automaton.

and Tempo will execute the schedule associated to the fischer The specification of a forward simulation continues with the
automaton with Lcheck bound to 4 and u-set bound to 2. keyword mapping, followed by a first-order predicate involv-

ing the formal parameters of the forward simulation and the
Simulate blocks have a simple structure and can use condi- state variables of the two automata. The mapping states
tionals, loops and run statements to construct scripts that an invariant property that must be true at every step of the
perform several simulations. The scripts are not limited to forward simulation.
a single automaton and can use multiple run statements to
instantiate and simulate several automata. For instance, the The proof section specifies the correspondence between the
fragment transitions and trajectories of the low-level and high-level

simulate do automata. It is used by the simulator to drive the transition

for i in {1..4} do in the "high-level" automaton in response to the execution
run fischer(4,i); of transition and trajectories in the "low-level" automaton.

od Each correspondence clause can alter the parameters and
od remap the transition as necessary.

performs a sequence of four simulations with an increasingly Consider the example in Figure 2. It features a forward sim-
parerorm apeqbunce. o e our tl simulation i inly b ulation between two instances of TimedChannel with different
larger upper-bounds. Note that the last simulation will be actuals for the deadline argument that bounds the amount
aborted prematurely given that tie actual arguments passed of time that elapses between the placement of a packet in
in do not satisfy the where restriction imposed by the fischer the queue and its removal. Clearly, any trace with a dead-

line of 2 is a valid implementation for a TimedChannel with
a looser deadline (e.g., 3) in which packets are allowed to

4.3 Forward Simulation Relation remain in the queue for up to 3 time units. This imple-
An automaton A is said to implement an automaton B pro- mentation relationship can be proved (say with PVS) by
vided that A and B have the same input and output actions showing the existence of a forward simulation relation from
and that every trace of A is also a trace of B. In order to TimedChannel(2) to TimedChannel(3).
show that A implements B, one can use a simulation relation
between states of A and states of B. The Tempo simulator is used here for a paired simulation

of two automata, a "lower-level" implementation automaton
Suppose that A and B have the same input and output and a "higher-level" specification automaton.
actions. A relation R between the states of A and B is a
forward simulation if The simulator starts, as usual, in the simulate block and

proceeds with the paired simulation of F. To drive this
simulation, it uses the schedule associated with the from

" every start state of A is related (via R) to some start automaton. This schedule simply repeats a sequence of five
state of B, transitions. Each transition is chosen uniformly at random

with the x : =choose k:Bool statement. If x is true, the sched-
" for every state s of A and every state u of B such that ule fires the input transition send to insert a message into

R(s, u), and for every discrete step (s, 7r, s') of A, there the channel. Otherwise, it fires the output transition rceive
is an execution fragment a of B starting with u, that to retrieve a message m. When a transition fires in the
has the same trace as 7r and that ends with a state u' source automaton, the proof specification is used to find the
such that R(s'. u'), and matching transition in the to automaton. Once identified,

* for every state s of A and every state u of B such that the transition is fired there as well. Finally, the assertion

R(s, u), and for every trajectory 7- of A starting with in the mapping is verified and, provided that it is satisfied,

s, there is an execution fragment a of B starting with the simulation resumes in the source automaton. The same

u that has the same trace as - f and that ends with a logic is used when a trajectory is followed in the source au-

state u' such that R(s', u). tomaton (the matching trajectory is identified and followed



in the target automaton).

5. USER INTERFACE
The Tempo simulator is embedded in a graphical user inter-

vocabulary Message(M: Type) face implemented on the Eclipse Rich Client Platform. The
types Packet : Tuple7nessage: M, deadline: Real] simulator presents a debugger-like interface where end-users

end can set breakpoints within simulate blocks, schedules or even
transitions. The users can then execute the simulation as a

automaton TimedChannel(b: Real) where b >0 whole or until the control hits a breakpoint. When it does,
imports Message(Type String) an inspector panel presents a view showing the state vari-
signature

input send(r:String) ables of the automata involved as well as local variables or
output receive(7n:String) formals of routines or transitions currently executing. The

states execution can be resumed through single stepping, stepping
queue: Seq[Packet] : =0; over instructions or executing until the next breakpoint.
now: Real: = 0;transitions
input send( ) When the execution completes, the user-interface also pro-

eff queue : = queue -[m,now+b]; vides a slider to inspect prior computation states. This can
output receive(-) become particularly handy to review the execution trace in

pre queue OOAhead(queue).message =m; a more intuitive way.
eff queue : = tail(queue);

trajectories Figure 3 shows the editor window with the control stopped
trajdef traj at the first line of the effect of the test(i) transition. The

stop when queue 0OAnow =head(queue).deadline; bottom panel contains a textual trace of the execution. The
evolve d(now) =1; snapshot was obtained when on the third step of the sim-

ulation. The visible part of the console shows all the state
schedule states x: Bool;m : String: = "helo"; do variables of the automaton which clearly indicates that the

for i in (1..5):Set[Nat] do program counter is set to pc-set for process P1.
x: = choose k:Bool;
if X =true
then fire input send("helo"); Figure 4 displays the state variables interactively when the
else fire output receive(m); control stops at a breakpoint. If the top slider is used, previ-

fi ous states of the computation can be restored and inspected.
follow traj duration 20; Displays like [PI] :pc_test,*pc_rem provide a condensed

od representation of the array. The entry for P1 is pc-test

while all the other entries are set to pc-rem.
forward simulation F

from TC1 : TirnedChannel(2)
to TC2 : TinedChannel(3) 6. CONCLUSION

mapping In this paper we overviewed the language Tempo based on
TCnow =TC2.now Timed Input/Output Automata formalism, and the inte-
Alen(TCI.queue) =len(TC2.queue) grated toolkit that supports the specification, simulation,
AVi:Nat (1 <i <len(MTC.queue)

ATCl.queue[i].deadline < TC2.queue[i]. deadline and analysis of distributed, concurrent, and timed systems
ATC1.queue[i].message = TC2. queue[i].message); expressed as Tempo specifications. The Tempo sinulator is

proof a powerful tool designed to simulate executions of Tempo
for input send(m) do specifications and to provide linked simulations of pairs of

fire input send(m); specifications, where one specification gives an abstract def-
od inition and the other is a more concrete specification that
for output receive(7n) do is supposed to implement the abstract definition. Together
odfire output receive(); with interfaces to model-checking and theorem-proving tools.

for trajectory traj duration k do the Tempo toolset provides a comprehensive integrated de-
follow traj duration k; velopment environment for complex distributed systems. Cur-

od rent work on future extensions for the toolset is funded by
end AFOSR and NSF, and includes automated distributed code

simulate do generation from Tempo specifications and optimization of

run F; distributed system deployment in target network platforms.
od
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